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Fourth-order �nite di�erence simulation of a di�erentially
heated cavity
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SUMMARY

We present benchmark simulations for the 8:1 di�erentially heated cavity problem, the focus of a
special session at the �rst MIT conference on Computational Fluid and Solid Mechanics in June 2001.
The numerical scheme is a fourth-order �nite di�erence method based on the vorticity-stream function
formulation of the Boussinesq equations. The momentum equation is discretized by a compact scheme
with the no-slip boundary condition enforced using a local vorticity boundary condition. Long-stencil
discretizations are used for the temperature transport equation with one-sided extrapolation applied near
the boundary. The time stepping scheme for both equations is classical fourth-order Runge–Kutta. The
main step is the solution of two discrete Poisson-like equations at each Runge–Kutta time stage, which
are solved using FFT-based methods. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. METHODOLOGY

We simulate numerically the 8:1 di�erentially heated cavity problem, a summary of which can
be found in Reference [1]. The �ow is governed by the incompressible Boussinesq equations,
which when non-dimensionalized and expressed in the vorticity-stream function formulation
for a 2D simply connected domain �, are given by

�t + (u ·∇)�= ��� (1a)

!t + (u ·∇)!= ��!+ �x (1b)

� =−! (1c)

 |� = 0 and @ =@n|� =0 (1d)
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where !,  , �, and u are the vorticity, stream function, temperature, and velocity �eld,
respectively. The velocity is de�ned by u=(u; v)T = ( y;− x)

T, and � denotes the boundary
of �. Also, �=

√
Pr=Ra and �=1=

√
RaPr where Ra is the Rayleigh number and Pr the

Prandtl number. For the simulations presented herein, Ra=3:4× 105 and Pr=0:71. Initial and
boundary conditions for the �ow have been outlined in an introductory note in this volume
and will not be reiterated here.
The numerical method used for our simulations is a fourth-order �nite di�erence scheme,

proposed in Reference [2], which we brie�y outline. First note that the Boussinesq equations
are simply the Navier–Stokes equations supplemented with the temperature equation (1a),
which is coupled to the momentum equation (1b) via the gravity term �x. The approach taken
in Reference [2] is to use an existing Navier–Stokes solver for (1b)–(1d) and then handle
the temperature equation separately. This is possible by treating the gravity term explicitly
in the time stepping procedure for the system, decoupling the computation of (1a) from that
of (1b). In detail, a fourth-order compact discretization, proposed in Reference [3], is used
to discretize the momentum equation (1b), including the gravity term. This introduces an
auxiliary vorticity variable �! de�ned in terms of a discrete Poisson-like equation involving
!. Additionally, the kinematic equation (1c) is also discretized using fourth-order compact
di�erencing. The result is again a discrete Poisson-like equation, this time for the stream
function with right-hand side − �!. This is solved using the Dirichlet boundary condition
 |� =0 by FFT-based methods. Using a discretization of the kinematic relation !=� along
�, the no-slip boundary condition @ =@n|� =0 is converted into a local formula for ! along
� in terms of  , i.e., a local vorticity boundary condition; see Reference [4]. The resulting
fourth-order approximation is known as Briley’s formula. The boundary values of ! provide
a Dirichlet boundary condition for the discrete Poisson-like equation for !, which is solved
using FFT-based methods.
The temperature transport equation is treated as a standard convection–di�usion equation. It

is discretized using fourth-order long-stencil di�erence operators, which requires temperature
values to be de�ned at ‘ghost’ grid points outside of the computational domain. They are
prescribed using one-sided extrapolation. To reduce the number of interior points required in
the extrapolation, which results in better stability, we apply information obtained from the
temperature equation on the boundary.
The classical fourth-order Runge–Kutta method is used for the time discretization of both

the momentum equation and the temperature equation. The overall scheme is very e�cient.
The main step is the solution of two discrete Poisson-like equations at each Runge–Kutta
time stage, which are solved using FFT-based methods. Thus, no iterative solvers or stopping
criteria are needed. The overall scheme is stable for a given �t as along as the eigenvalues
of system (1), linearized about a �xed velocity, lie within the stability region of the classi-
cal fourth-order Runge–Kutta method. This will generally be the case [3] provided that �t
satis�es

‖u‖∞�t
h

=CFL61:5 and
��t
h2
6
(
1
4

)
(2)

where h=min{�x;�y}, and �=max{�; �}. For all of the computations presented here, a
�xed �t was used, dependent on the grid resolution, with CFL=0:75 and ‖u‖∞=1:0.
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For metrics involving the pressure we solve the derived pressure Poisson equation

�p=∇·(−u ·∇u+ ĵ�) (3)

using a second-order �nite di�erence scheme for non-staggered grids proposed in Refer-
ence [5]. The Neumann boundary condition

@p
@n
=(��u+ ĵ�) ·n (4)

is used when solving (3). In order to accurately and consistently approximate this Neumann
boundary condition the boundary condition ∇·u|� =0 from the pressure Poisson equation
formulation of the Navier–Stokes equations is used to de�ne the needed ‘ghost points’ at
the discrete level; see Reference [5]. Using this discrete Neumann boundary condition, the
pressure Poisson equation (3) is solved using FFT-based methods.

2. RESULTS

Two grid resolutions (Nx; Ny), equi-spaced in each co-ordinate direction, were computed:
(65; 513), and (97; 769). Thus, in each case �x=�y. The simulations were run until a �nal
non-dimensional time of T =1000. A �xed �t was used for each simulation determined by
(2) with CFL=0:75 and ‖u‖∞=1:0.

2.1. Point, wall, and global data

Measurements of the �ow variables at 5 data points, de�ned in Reference [1], were obtained
using bicubic interpolation. The derivatives required in the interpolation procedure were
approximated to fourth-order accuracy. Amplitudes and periods were computed by �nding
the zero crossings of mean adjusted measurements using data over 10 periods after T =950.
Simpson’s rule was used to approximate the integrals in the global metrics.
Tables I and II present results at the two grid resolutions. Point metrics without subscripts

are for data point 1, i.e., (x; y)= (0:181; 7:370). Metrics with two subscripts are the time aver-
age of the di�erence between the given variable at the data points indexed by the subscripts;
see Reference [1]. Overall the results at the two resolutions are in good agreement. The largest
discrepancies are seen in the �P pressure measurements. This is most likely attributable to
the fact that the pressure is only recovered to second-order accuracy using (3) and (4). How-
ever, we emphasize that the pressure computation does not a�ect the overall accuracy of the
numerical scheme since it is performed only to produce the compulsory data.
We point out that in each computation the skewness ”12 was identically zero. Thus, the

physical skew-symmetry of the non-dimensional temperature � has been reproduced in our
simulation. In Figure 1 is shown a time history of the temperature �1 at (x; y)= (0:181; 7:370).
Finally, we note that the data in Tables I and II di�ers from that presented in Reference [6].

As noted above the metrics in the current work were computed by �nding the zero crossings of
mean adjusted data. For the results presented in Reference [6] an FFT method was used. Upon
examination of the two methods the former was found to be more accurate, which became
clear when comparing the metrics under grid re�nement. For completeness we include here
in Table III the metrics presented in Reference [6] for the �nest grid resolution.
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Table I. Point and global metrics for 65× 513 grid.
Grid resolution: 65× 513

Duration: [950; 984:11], steps per period: 292

Quantity Average Amplitude Period

Point metrics
U 5:6551889e− 02 5:6760554e− 02 3:4099372e + 00
V 4:6167337e− 01 7:9432504e− 02 3:4099425e + 00
� 2:6551460e− 01 4:4197112e− 02 3:4099405e + 00
�12 0:0000000e + 00 0:0000000e + 00
 −7:3605769e− 02 7:2565716e− 03 3:4099521e + 00
! −2:3583290e + 00 1:1187879e + 00 3:4099067e + 00
�P14 −1:1542627e− 03 2:0750962e− 02 3:4099519e + 00
�P51 −5:2854594e− 01 2:2864852e− 02 3:4099436e + 00
�P35 5:2970020e− 01 1:0362644e− 02 3:4099466e + 00

Global metrics
Nu : x=0 −4:5801927e + 00 7:2962600e− 03 3:4099466e + 00
Nu : x=W −4:5801927e + 00 7:2962600e− 03 3:4099466e + 00
û 2:3953032e− 01 3:4356000e− 05 3:4100230e + 00
!̂ 3:0169977e + 00 3:2773600e− 03 3:4099423e + 00

Table II. Point and global metrics for 97× 769 grid.
Grid resolution: 97× 769

Duration: [950; 984:11], steps per period: 438

Quantity Average Amplitude Period

Point metrics
U 5:6395438e− 02 5:5246132e− 02 3:4111534e + 00
V 4:6183149e− 01 7:7684964e− 02 3:4111601e + 00
� 2:6548480e− 01 4:3051242e− 02 3:4111579e + 00
�12 0:0000000e + 00 0:0000000e + 00
 −7:3688018e− 02 7:0676312e− 03 3:4111681e + 00
! −2:3687941e + 00 1:0875479e + 00 3:4111443e + 00

�P14 −1:3921419e− 03 2:0382512e− 02 3:4111650e + 00
�P51 −5:3076112e− 01 2:2469632e− 02 3:4111632e + 00
�P35 5:3215326e− 01 1:0105539e− 02 3:4111605e + 00

Global metrics
Nu : x=0 −4:5791427e + 00 7:1351100e− 03 3:4111610e + 00
Nu : x=W −4:5791427e + 00 7:1351100e− 03 3:4111610e + 00
û 2:3951401e− 01 3:3738000e− 05 3:4112994e + 00
!̂ 3:0170593e + 00 3:2140900e− 03 3:4111571e + 00

2.2. Computational resources and timings

The computations were performed on a single processor DEC Alpha 500au Personal Workstation
with 1028MB of memory and a 2MB cache. The CPU is an Alpha 21164 500MHz chip with
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Figure 1. Time history of �1, the temperature at (x; y)= (0:181; 7:370) for the (97; 769) grid. (top) full
simulation duration; (bottom) eventual oscillatory behaviour of �1.

a SPECfp95 rating of 19.5 (18.0 base). All computations were performed in double precision
(64 bits), coded in Fortran, and compiled using the fast optimization option. Performance data
and timings for each grid based on a �nal simulation time of T =1000 are shown in Table IV.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1031–1037



1036 H. JOHNSTON AND R. KRASNY

Table III. Point and global metrics for 97× 769 grid (from Reference [6] using FFT method).

Grid resolution: 97× 769
Duration: [950,984.125], steps per period: 438

Quantity Average Amplitude Period

Point metrics
U 5:616e− 02 5:452e− 02 3:422e + 00
V 4:605e− 01 7:718e− 02 3:422e + 00
� 2:647e− 01 4:268e− 02 3:422e + 00
�12 0:000e + 00 0:000e + 00
 −7:348e− 02 6:856e− 03 3:422e + 00
! −2:362e + 00 9:940e− 01 3:422e + 00
�P14 −1:375e− 03 2:004e− 02 3:422e + 00
�P51 −5:293e− 01 2:236e− 02 3:422e + 00
�P35 5:307e− 01 1:013e− 02 3:422e + 00

Global metrics
Nu : x=0 −4:567e + 00 7:130e− 03 3:422e + 00
Nu : x=W −4:567e + 00 7:130e− 03 3:422e + 00
û 2:389e− 01 3:366e− 05 3:422e + 00
!̂ 3:001e + 00 3:216e− 03 3:422e + 00

Table IV. Timings and performance data.

Grid size �t Steps CPU (sec) Memory (MB) CPU (�s)=point=step

(65; 513) 1:171875e− 02 85 333 28 691 7.02 10.08
(97; 769) 7:812500e− 03 128 000 121 161 11.41 12.69

As noted above the simulations were performed using a �xed �t. This was done in order
to collect �ow data at a precise �xed time interval, and allowed FFT techniques to be used to
compute the metrics presented in the conference proceedings [6]. As noted above the results
presented in this work compute the metrics by determining the zero crossings of mean adjusted
data, which we found to be more accurate. Thus, a �xed �t is not necessary and in fact adds
signi�cantly to the total computational time. This was determined by performing a simulation
and allowing for a variable time step. We took (Nx; Ny)= (97 769) and CFL=1:0. Allowing
for a variable time step by monitoring ‖u‖∞ during the run to determine �t resulted in a
one-third reduction in the total run time; see Reference [2].

3. CONCLUSION

Benchmark quality results of the simulation of a 8:1 di�erentially heated cavity were presented.
The numerical method used is fully explicit in time, simple to implement, and highly e�cient.
The implementation of the spatial discretization and time stepping make possible the solution
of the linear systems by direct FFT-based solvers. The resulting e�ciency makes the method
well suited for numerical studies at moderate to large Rayleigh numbers, orders of magnitude
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above that studied in this work. In this regime the convective time constraint would be more
restrictive than the di�usive time constraint. This is the best that can be hoped for in the
sense that in practice one must always honour the convective time step constraint in order to
faithfully follow the dynamics of the �ow [2].
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